Acta Crystallographica Section C
Crystal Structure
Communications

Bis[2-(pyrazol-3-yl)phenolato- $\left.\kappa^{2} N^{2}, O\right]-$ copper(II) dimethanol solvate

Xiaoming Liu, Colin A. Kilner, Mark Thornton-Pett and Malcolm A. Halcrow*
School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, England Correspondence e-mail: m.a.halcrow@chem.leeds.ac.uk

Received 11 September 2001
Accepted 17 October 2001
Online 14 December 2001
The title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{CH}_{3} \mathrm{OH}$, contains a crystallographically centrosymmetric near-regular square planar $\mathrm{Cu}^{\mathrm{II}}$ centre with trans-disposed chelating ligands. The complex molecules associate into a one-dimensional polymeric chain via hydrogen bonding to the solvent molecules.

Comment

We have recently described how complexation of CuCl_{2} or CuBr_{2} by $3\{5\}$-tert-butylpyrazole in basic MeOH leads to a novel heptacopper aggregate structure, which is templated by $\mathrm{N}-\mathrm{H} \cdots X\left(X^{-}=\mathrm{Cl}^{-}, \mathrm{Br}^{-}\right)$hydrogen bonding between the pyrazole ligands and non-coordinated halide anions (Liu et al., 2001). As an extension of this work, we were keen to examine the $\mathrm{Cu}^{\mathrm{II}}$ chemistry of pyrazole ligands containing additional hydrogen-bonding functionality, in addition to the $\mathrm{N}-\mathrm{H}$ group of the pyrazole ring. 2-(Pyrazol-3-yl)phenol (HL) is one such ligand that is readily available (Catalan et al., 1992), and we now report the structure of the mononuclear complex $\left[\mathrm{Cu} L_{2}\right] \cdot 2 \mathrm{CH}_{3} \mathrm{OH}$, (I). No other complexes of L^{-}have been previously crystallographically characterized, although the crystal structure of one complex of the closely related ligand 2-(5-methylpyrazol-3-yl)phenol ($\left.\mathrm{H} L^{\prime}\right), \quad\left[\mathrm{Fe}^{\prime}{ }_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}\right]$ $\mathrm{NO}_{3} \cdot \mathrm{CH}_{4} \mathrm{O}$, has been reported (Ainscough et al., 1980).

(I)

The asymmetric unit contains half a complex molecule, with Cu 1 lying on the crystallographic inversion centre at $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$, together with one molecule of methanol. As in $\left[\mathrm{Fe}^{\prime}{ }_{2}\left(\mathrm{CH}_{3}-\right.\right.$ $\left.\mathrm{OH})_{2}\right] \mathrm{NO}_{3} \cdot \mathrm{CH}_{3} \mathrm{OH}$ (Ainscough et al., 1980), the L^{-}ligands in (I) chelate to the Cu ion through their pyrazole N and phenoxide O donors, giving a four-coordinate $\mathrm{Cu}^{\mathrm{II}}$ centre with a trans $-\mathrm{N}_{2} \mathrm{O}_{2}$ donor set. The coordination geometry at Cu 1 is
strictly planar by symmetry, and is almost perfectly square. The $\mathrm{Cu}^{\mathrm{II}}$ ion stands proud of the least-squares plane of the chelating ligand, by 0.5784 (13) \AA. This is also manifested in the dihedral angle between the square plane of donors at Cu 1 $\left[\mathrm{Cu} 1, \mathrm{~N} 2, \mathrm{O} 13, \mathrm{~N} 2^{\mathrm{i}}\right.$ and $\mathrm{O} 13^{\mathrm{i}}$; symmetry code: (i) $1-x, 1-y$, $1-z]$ and the least squares plane of the L^{-}ligand (N2-O13), which is $24.73(7)^{\circ}$. The pyrazole and phenoxide moieties of the ligand are twisted with respect to each other, with the dihedral angle between the least-squares planes $\mathrm{N} 2-\mathrm{C} 7$ and C8-O13 being $16.37(11)^{\circ}$.

Figure 1
A view of the title compound with 50% probability displacement ellipsoids, showing the atom-numbering scheme employed. H atoms have arbitrary radii. [Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $x, y, 1+z$.]

The methanol molecule accepts a hydrogen bond from the L^{-}pyrrolic $\mathrm{N}-\mathrm{H}$ group, and donates a hydrogen bond to the phenoxide O-donor of a neighbouring molecule related by x, $y, 1-z$. This affords a one-dimensional polymeric chain of hydrogen-bonded molecules, running parallel to the z axis of the unit cell. Adjacent chains are linked by a $\pi-\pi$ interaction between the phenyl rings $\mathrm{C} 7-\mathrm{C} 12$ and $\mathrm{C} 7{ }^{\mathrm{iii}}-\mathrm{C} 122^{\mathrm{iiii}}$ (related by $-x, 1-y, 1-z)$. The interacting rings are strictly coplanar by symmetry and are separated by 3.410 (5) \AA, with their centroids being offset by $1.24 \AA$. These parameters imply a $\pi-\pi$ interaction that is only weakly electrostatically attractive (Hunter \& Sanders, 1990).

Experimental

A mixture of 2-(pyrazol-3-yl)phenol ($0.32 \mathrm{~g}, 2.0 \mathrm{mmol}$; Catalan et al., 1992), $\mathrm{CuBr}_{2}(0.22 \mathrm{~g}, 1.0 \mathrm{mmol})$ and $\mathrm{NaOH}(0.040 \mathrm{~g}, 1 \mathrm{mmol})$ in $\mathrm{MeOH}(50 \mathrm{ml})$ was stirred at room temperature for 16 h , yielding a brown solution. Concentration of this solution to about half its original volume afforded a dark precipitate, which was removed by filtration. Storage of the filtrate at 263 K afforded dark-brown plates, which slowly degraded in vacuo. The dried material reproducibly analyses for $\left[\mathrm{Cu} L_{2}\right] \cdot x \mathrm{CH}_{4} \mathrm{O} \cdot(2-x) \mathrm{H}_{2} \mathrm{O}(x=c a 0.5)$: found C 53.4, H $4.5, \mathrm{~N} 12.9 \%$; calculated for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{CuN}_{4} \mathrm{O}_{2} \cdot 1.5 \mathrm{CH}_{4} \mathrm{O} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C} 53.4$, H 4.8, N 12.8\%.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{CH}_{4} \mathrm{O}$
$M_{r}=445.96$
Monoclinic, $P 2_{\mathrm{o}_{1}} / c$
$a=7.5210(2) \AA$ 。
$b=15.6270(4) \AA$
$c=8.3657$ (3) A
$\beta=105.000(1)^{\circ}$
$V=949.72(5) \AA^{3}$
$Z=2$

Data collection

Nonius KappaCCD diffractometer
Area-detector scans
Absorption correction: multi-scan (SORTAV; Blessing, 1995)
$T_{\text {min }}=0.806, T_{\text {max }}=0.965$
10193 measured reflections
2172 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.093$
$S=1.06$
2172 reflections
178 parameters
All H -atom parameters refined
$D_{x}=1.559 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 10193 reflections
$\theta=2.8-27.5^{\circ}$
$\mu=1.19 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Plate, brown
$0.19 \times 0.15 \times 0.03 \mathrm{~mm}$

1952 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.038$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-9 \rightarrow 9$
$k=-20 \rightarrow 20$
$l=-10 \rightarrow 10$

$$
\begin{aligned}
& \begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.053 P)^{2}\right. \\
& \quad+0.359 P] \\
& \quad \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.37 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.51 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: } S H E L X L 97 \\
& \text { Extinction coefficient: } 0.032(5)
\end{aligned}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{N} 2$	$1.9390(15)$	$\mathrm{Cu} 1-\mathrm{O} 13$	$1.9243(12)$
$\mathrm{O} 13-\mathrm{Cu} 1-\mathrm{N} 2$	$90.07(6)$		

All H atoms were located in a Fourier difference map and allowed to refine freely. Refined $\mathrm{C}-\mathrm{H}$ distances are in the range 0.88 (3)1.02 (4) \AA, while $\mathrm{N} 3-\mathrm{H} 3=0.88$ (3) and $\mathrm{O} 15-\mathrm{H} 15=0.75$ (3) \AA.

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction:

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N3-H3 $\cdots \mathrm{O} 15$	$0.88(3)$	$2.02(3)$	$2.815(2)$	$150(2)$
O15-H15 ${ }^{\mathrm{I}}$ (313		$0.75(3)$	$1.97(3)$	$2.724(2)$

Symmetry code: (i) $x, y, z-1$.

DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: local program.

The authors acknowledge the Royal Society of London for a University Research Fellowship to MAH, and the EPSRC for a postdoctoral fellowship to XL.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1476). Services for accessing these data are described at the back of the journal.

References

Ainscough, E. W., Brodie, A. M., Plowman, J. E., Brown, K. L., Addison, A. W. \& Gainsford, A. R. (1980). Inorg. Chem. 19, 3655-3663.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Catalan, J., Fabero, F., Claramunt, R. M., Santa Maria, M. D., Foces-Foces, M. C., Cano, F. H., Martinez-Ripoll, M., Elguero, J. \& Sastre, R. (1992). J. Am. Chem. Soc. 114, 5039-5048.
Hunter, C. A. \& Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525-5534.
Liu, X., McAllister, J. A., de Miranda, M. P., Whitaker, B. J., Kilner, C. A., Thornton-Pett, M. \& Halcrow, M. A. (2001). Angew. Chem. Int. Ed. Submitted.
McArdle, P. (1995). J. Appl. Cryst. 28, 65.
Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276,
Macromolecular Crystallography, Part A, edited by C. W. Carter \& R. M.
Sweet, pp. 307-326. London: Academic Press.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

